
 

Customer Credit Application Prediction
System
Import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import confusion_matrix, classification_report, roc_curve,
from sklearn.impute import SimpleImputer
from imblearn import over_sampling
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.feature_selection import mutual_info_classif
from sklearn.tree import DecisionTreeClassifier, plot_tree
import kds
from imblearn.pipeline import Pipeline

Data Preparation
Load in data
data = pd.read_csv('datafile_full.csv')

data.head()

ID_code target var_0 var_1 var_2 var_3 var_4 var_5 var_6 var_

0 125172.0 0 10.6216 0.1667 15.5182 10.1634 9.8419 -0.1156 7.4348 14.694

1 93976.0 0 13.1492 2.9210 6.0275 5.7623 12.5731 7.9090 5.3149 17.844

2 128558.0 0 7.9077 4.3397 8.5575 4.7743 10.3623 -6.6784 5.9665 17.237

3 138582.0 0 6.1757 -1.5021 16.5598 8.9091 8.0741 5.4070 5.3698 10.873

4 109242.0 0 10.6910 -6.5074 11.0558 4.4293 8.7645 -15.5975 5.6018 20.139

5 rows × 202 columns

Overview of data
pd.set_option('display.max_columns', None)
print(data.info())

In [1]:

In [2]:

In [3]:

Out[3]:

In [4]:

print(str('Number of rows: ') + str(print(data.shape[0])))
print(str('Number of rows: ') + str(print(data.shape[1])))

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Columns: 202 entries, ID_code to var_199
dtypes: float64(201), int64(1)
memory usage: 154.1 MB
None
100000
Number of rows: None
202
Number of rows: None

NA values
data.isna().any(axis=1).sum()

np.int64(40072)

check the variables for NA values
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
data.isna().sum().sort_values(ascending = False)

In [5]:

Out[5]:

In [6]:

var_45 40003
var_96 5004
var_76 5003
var_18 5
var_12 3
var_33 3
var_16 3
var_134 3
var_50 3
var_41 3
var_47 2
var_9 2
var_39 2
var_8 2
var_95 2
var_118 2
var_125 2
var_108 2
var_77 2
var_107 2
var_117 2
var_93 2
var_7 2
var_10 2
var_1 2
var_68 1
var_46 1
var_48 1
var_49 1
var_51 1
var_25 1
var_61 1
var_62 1
var_53 1
var_27 1
var_37 1
var_59 1
var_70 1
var_22 1
var_15 1
var_17 1
var_19 1
var_136 1
var_138 1
var_141 1
var_140 1
var_150 1
var_102 1
var_103 1
var_90 1
var_120 1
var_123 1
var_121 1
var_128 1
var_100 1
var_99 1
var_105 1
var_104 1
var_87 1
var_79 1

Out[6]:

var_85 1
var_94 1
var_97 1
var_24 1
var_11 1
var_13 1
var_184 1
var_166 1
var_180 1
var_185 1
var_173 1
var_6 0
var_4 0
var_5 0
var_71 0
var_69 0
var_66 0
var_67 0
var_65 0
var_64 0
var_60 0
var_63 0
var_56 0
var_58 0
var_57 0
var_43 0
var_44 0
var_52 0
var_54 0
var_55 0
var_40 0
var_42 0
var_20 0
var_14 0
var_23 0
var_21 0
var_28 0
var_26 0
var_31 0
var_30 0
var_29 0
var_32 0
var_35 0
var_34 0
var_36 0
var_38 0
target 0
ID_code 0
var_2 0
var_0 0
var_3 0
var_89 0
var_91 0
var_92 0
var_101 0
var_98 0
var_88 0
var_81 0
var_111 0
var_110 0

var_106 0
var_109 0
var_119 0
var_116 0
var_114 0
var_115 0
var_113 0
var_112 0
var_75 0
var_72 0
var_78 0
var_73 0
var_80 0
var_83 0
var_86 0
var_84 0
var_82 0
var_74 0
var_135 0
var_133 0
var_132 0
var_131 0
var_129 0
var_130 0
var_126 0
var_127 0
var_124 0
var_122 0
var_146 0
var_145 0
var_143 0
var_144 0
var_142 0
var_139 0
var_151 0
var_152 0
var_154 0
var_153 0
var_156 0
var_157 0
var_158 0
var_155 0
var_159 0
var_160 0
var_162 0
var_161 0
var_147 0
var_148 0
var_149 0
var_137 0
var_167 0
var_165 0
var_164 0
var_163 0
var_171 0
var_172 0
var_170 0
var_168 0
var_175 0
var_176 0

 

var_178 0
var_177 0
var_179 0
var_181 0
var_174 0
var_169 0
var_183 0
var_182 0
var_186 0
var_187 0
var_188 0
var_189 0
var_190 0
var_191 0
var_192 0
var_193 0
var_194 0
var_195 0
var_196 0
var_197 0
var_198 0
var_199 0
dtype: int64

summmary statistics
data.describe()

ID_code target var_0 var_1 var_2

count 100000.000000 100000.000000 100000.000000 99998.000000 100000.000000 10000

mean 99916.419220 0.100380 10.681089 -1.645731 10.717789

std 57689.007176 0.300508 3.042589 4.057037 2.642314

min 2.000000 0.000000 0.408400 -14.091000 2.117100

25% 49950.750000 0.000000 8.461025 -4.776975 8.723400

50% 99884.500000 0.000000 10.533900 -1.623700 10.589800

75% 149756.500000 0.000000 12.754825 1.355375 12.516925

max 200000.000000 1.000000 19.737900 10.376800 19.353000

drop var_45 (has 40.000 NAs)
data = data.drop(columns = ['var_45', 'ID_code'])
print(str('Number of Remaining NAs: ') + str(data.isna().any(axis = 1).sum()))

Number of Remaining NAs: 5101

total target varibale distribution
data['target'].value_counts()

target
0 89962
1 10038
Name: count, dtype: int64

In [7]:

Out[7]:

In [8]:

In [9]:

Out[9]:

check the relationship of remaining missing values with the target variable
remaining_na = data[data.isna().any(axis = 1)]

proportion of the target value for remaining na values
print(str('Number of observations for target value:') + str(remaining_na['target
print()
print(str('Proportion of observations for target value:') + str(remaining_na['ta

Number of observations for target value:target
0 4543
1 558
Name: count, dtype: int64

Proportion of observations for target value:target
0 0.89061
1 0.10939
Name: proportion, dtype: float64

Removing the remaining rows with NA values would only result in removing roughly 5%
of observations that belong to the target variable category of 1 (the minority class). For
this reason, it is acceptable to remove all remaining rows with NA values.

drop remaining NAs
data = data.dropna()
print(str('Number of Remaining NAs: ') + str(data.isna().any(axis = 1).sum()))

Number of Remaining NAs: 0

number of columns and rows after removing NAs
print(str('Number of rows: ') + str(data.shape[0]))
print(str('Number of columns: ') + str(data.shape[1]))

Number of rows: 94899
Number of columns: 200

print('Proportion of classes of target variable')
data['target'].value_counts(normalize = True)

Proportion of classes of target variable

target
0 0.900104
1 0.099896
Name: proportion, dtype: float64

Training and Test Sets
partition variables
X = data.drop(columns = 'target')
y = data['target']

random_seed = 2

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rando

Information Gain

In [10]:

In [11]:

In [12]:

In [13]:

Out[13]:

In [14]:

Use mutual_info_classif to compute information gain values of the attributes
IG_scores = mutual_info_classif(X_train, y_train, random_state=random_seed)

Create a DataFrame with the results
weights = pd.DataFrame({
 'attr_importance': IG_scores
}, index=X_train.columns)

Use the features with IG more than 0.004
weights = weights[weights['attr_importance'] > 0.004]

Extract the names of those features
features = weights.index.tolist()

print(f"Number of features with positive information gain: {len(features)}")
print(f"\nFeatures: {features}")
print(f"\nInformation gain values:\n{weights.sort_values('attr_importance', asce

Number of features with positive information gain: 6

Features: ['var_12', 'var_22', 'var_81', 'var_110', 'var_146', 'var_164']

Information gain values:
 attr_importance
var_12 0.004983
var_81 0.004854
var_146 0.004386
var_22 0.004236
var_164 0.004189
var_110 0.004013

The information gain of each individual variable is extremely low. Therefore, they do not
contain much information in predicting the target variable. We will train the models on
all remaining variables.

Modeling

SVM
define pipeline
pipeline = Pipeline(steps=[
 ('undersample', RandomUnderSampler(
 sampling_strategy=0.67,
 random_state=random_seed
)),
 ('scaler', StandardScaler()),
 ('svm', SVC(
 kernel='rbf',
 random_state=random_seed,
 probability=True
))
])

set parameters
param_grid = {

In [15]:

In [16]:

 'svm__C': [0.1, 1, 6]
}

grid search
svm_grid_search = GridSearchCV(
 estimator=pipeline,
 param_grid=param_grid,
 cv=3,
 scoring='recall',
 n_jobs=-1
)

svm_grid_search.fit(X_train, y_train)

results
print("Best C:", svm_grid_search.best_params_['svm__C'])
print("Best recall:", svm_grid_search.best_score_)

svm_best = svm_grid_search.best_estimator_

Best C: 6
Best recall: 0.7025316455696201

Decision Tree
decision tree model
decision_tree = DecisionTreeClassifier(
 criterion='entropy',
 max_depth=12,
 min_samples_leaf=50,
 min_samples_split=300,
 class_weight='balanced',
 random_state=random_seed
)

train
decision_tree.fit(X_train, y_train)

feature importance dt
feature = X_train.columns
f_importance_dt = decision_tree.feature_importances_

feature_importance_dt = pd.DataFrame({'Feature':feature, 'Importance':f_importan

feature_importance_dt

In [17]:

Out[17]: ▾ DecisionTreeClassifier ?i

DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
 max_depth=12, min_samples_leaf=50, min_samples_s
plit=300,

 random_state=2)

In [18]:

https://scikit-learn.org/1.6/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Feature Importance

80 var_81 0.083294

138 var_139 0.081786

12 var_12 0.058914

109 var_110 0.046921

26 var_26 0.039333

22 var_22 0.033488

98 var_99 0.032903

173 var_174 0.030775

52 var_53 0.030365

6 var_6 0.023812

79 var_80 0.021267

108 var_109 0.020846

145 var_146 0.019426

77 var_78 0.018784

189 var_190 0.016429

0 var_0 0.015374

147 var_148 0.015296

165 var_166 0.014981

21 var_21 0.014768

1 var_1 0.014680

47 var_48 0.013757

168 var_169 0.013327

75 var_76 0.012955

153 var_154 0.012771

178 var_179 0.012749

40 var_40 0.012350

2 var_2 0.011847

197 var_198 0.011818

35 var_35 0.011523

46 var_47 0.008017

3 var_3 0.007733

31 var_31 0.007488

44 var_44 0.007318

Out[18]:

Feature Importance

90 var_91 0.007313

34 var_34 0.007056

176 var_177 0.007031

164 var_165 0.006995

103 var_104 0.006714

132 var_133 0.006503

70 var_71 0.006415

121 var_122 0.006311

198 var_199 0.006143

148 var_149 0.006065

32 var_32 0.005928

163 var_164 0.005767

122 var_123 0.005551

76 var_77 0.005379

162 var_163 0.005314

166 var_167 0.005200

81 var_82 0.005068

190 var_191 0.004948

146 var_147 0.004831

169 var_170 0.004713

156 var_157 0.004652

28 var_28 0.004312

85 var_86 0.004199

71 var_72 0.004058

180 var_181 0.003993

66 var_67 0.003977

126 var_127 0.003817

191 var_192 0.003687

106 var_107 0.003644

39 var_39 0.003636

5 var_5 0.003611

133 var_134 0.003347

16 var_16 0.003163

Feature Importance

25 var_25 0.003101

127 var_128 0.002847

187 var_188 0.002816

8 var_8 0.002767

18 var_18 0.002753

93 var_94 0.002739

196 var_197 0.002703

124 var_125 0.002660

141 var_142 0.002637

123 var_124 0.002569

24 var_24 0.002505

42 var_42 0.002482

97 var_98 0.002427

152 var_153 0.002260

95 var_96 0.002054

36 var_36 0.002042

172 var_173 0.001993

89 var_90 0.001931

171 var_172 0.001896

158 var_159 0.001866

182 var_183 0.001829

94 var_95 0.001525

140 var_141 0.001158

69 var_70 0.000000

65 var_66 0.000000

63 var_64 0.000000

64 var_65 0.000000

61 var_62 0.000000

62 var_63 0.000000

58 var_59 0.000000

68 var_69 0.000000

67 var_68 0.000000

23 var_23 0.000000

Feature Importance

30 var_30 0.000000

33 var_33 0.000000

37 var_37 0.000000

38 var_38 0.000000

9 var_9 0.000000

13 var_13 0.000000

11 var_11 0.000000

10 var_10 0.000000

17 var_17 0.000000

15 var_15 0.000000

20 var_20 0.000000

19 var_19 0.000000

4 var_4 0.000000

57 var_58 0.000000

60 var_61 0.000000

59 var_60 0.000000

56 var_57 0.000000

55 var_56 0.000000

53 var_54 0.000000

54 var_55 0.000000

41 var_41 0.000000

49 var_50 0.000000

51 var_52 0.000000

50 var_51 0.000000

48 var_49 0.000000

45 var_46 0.000000

43 var_43 0.000000

14 var_14 0.000000

7 var_7 0.000000

29 var_29 0.000000

27 var_27 0.000000

82 var_83 0.000000

86 var_87 0.000000

Feature Importance

84 var_85 0.000000

83 var_84 0.000000

78 var_79 0.000000

134 var_135 0.000000

131 var_132 0.000000

129 var_130 0.000000

130 var_131 0.000000

128 var_129 0.000000

120 var_121 0.000000

119 var_120 0.000000

125 var_126 0.000000

111 var_112 0.000000

112 var_113 0.000000

113 var_114 0.000000

114 var_115 0.000000

115 var_116 0.000000

116 var_117 0.000000

117 var_118 0.000000

118 var_119 0.000000

110 var_111 0.000000

107 var_108 0.000000

104 var_105 0.000000

105 var_106 0.000000

74 var_75 0.000000

73 var_74 0.000000

72 var_73 0.000000

87 var_88 0.000000

91 var_92 0.000000

92 var_93 0.000000

88 var_89 0.000000

96 var_97 0.000000

99 var_100 0.000000

100 var_101 0.000000

Feature Importance

101 var_102 0.000000

102 var_103 0.000000

160 var_161 0.000000

159 var_160 0.000000

161 var_162 0.000000

157 var_158 0.000000

154 var_155 0.000000

151 var_152 0.000000

155 var_156 0.000000

135 var_136 0.000000

142 var_143 0.000000

139 var_140 0.000000

136 var_137 0.000000

137 var_138 0.000000

143 var_144 0.000000

144 var_145 0.000000

149 var_150 0.000000

150 var_151 0.000000

181 var_182 0.000000

179 var_180 0.000000

175 var_176 0.000000

177 var_178 0.000000

170 var_171 0.000000

167 var_168 0.000000

174 var_175 0.000000

183 var_184 0.000000

188 var_189 0.000000

184 var_185 0.000000

185 var_186 0.000000

186 var_187 0.000000

194 var_195 0.000000

193 var_194 0.000000

192 var_193 0.000000

Feature Importance

195 var_196 0.000000

feature selection for decision tree
feature_selection = feature_importance_dt[feature_importance_dt['Importance'] >
X_train_selected = X_train[feature_selection]
X_test_selected = X_test[feature_selection]

decision tree model with select features
decision_tree_selected = DecisionTreeClassifier(
 criterion='entropy',
 max_depth=12,
 min_samples_leaf=50,
 min_samples_split=300,
 class_weight='balanced',
 random_state=random_seed
)

train
decision_tree_selected.fit(X_train_selected, y_train)

Logistic Regression
define pipeline
pipeline = Pipeline(steps=[
 ('scaler', StandardScaler()),
 ('logreg', LogisticRegression(
 penalty="l2",
 solver="liblinear",
 class_weight="balanced",
 random_state=random_seed,
 max_iter=1000
))
])

sets parameters
log_param_grid = {
 'logreg__C': [0.01, 0.1, 1, 10]
}

grid search
log_grid_search = GridSearchCV(
 estimator=pipeline,
 param_grid=log_param_grid,
 cv=3,
 scoring="recall",
 n_jobs=-1

In [19]:

In [20]:

Out[20]: ▾ DecisionTreeClassifier ?i

DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
 max_depth=12, min_samples_leaf=50, min_samples_s
plit=300,

 random_state=2)

In [21]:

https://scikit-learn.org/1.6/modules/generated/sklearn.tree.DecisionTreeClassifier.html

)

log_grid_search.fit(X_train, y_train)

results
print("Best C:", log_grid_search.best_params_['logreg__C'])
print("Best CV Recall:", log_grid_search.best_score_)

logreg_best = log_grid_search.best_estimator_

Best C: 0.01
Best CV Recall: 0.7689873417721519

Random Forest
rf_param_grid = {
 'n_estimators': [100, 200],
 'max_depth': [10, 20, None],
 'min_samples_leaf': [1, 5],
 'max_features': ['sqrt']
}

rf = RandomForestClassifier(class_weight='balanced', random_state=random_seed)

rf_grid = GridSearchCV(
 estimator=rf,
 param_grid=rf_param_grid,
 scoring='recall',
 cv=3,
 n_jobs=-1
)

rf_grid.fit(X_train, y_train)

print("Best parameters:", rf_grid.best_params_)
print("Best CV recall:", rf_grid.best_score_)

rf_best = rf_grid.best_estimator_

Best parameters: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 5,
'n_estimators': 100}
Best CV recall: 0.09433393610608799

feature importance rf
feature = X_train.columns
f_importance_rf = rf_best.feature_importances_

feature_importance_rf = pd.DataFrame({'Feature':feature, 'Importance':f_importan

feature_importance_rf

In [22]:

In [23]:

Feature Importance

80 var_81 0.049323

138 var_139 0.037102

12 var_12 0.027238

109 var_110 0.025602

26 var_26 0.022673

52 var_53 0.020696

22 var_22 0.019217

6 var_6 0.018396

145 var_146 0.016912

165 var_166 0.015644

98 var_99 0.015356

79 var_80 0.014528

75 var_76 0.014309

77 var_78 0.013063

108 var_109 0.013028

173 var_174 0.012854

21 var_21 0.012183

189 var_190 0.011837

13 var_13 0.011738

2 var_2 0.011531

147 var_148 0.011447

178 var_179 0.011357

132 var_133 0.010906

197 var_198 0.010567

40 var_40 0.009614

0 var_0 0.008865

164 var_165 0.008676

1 var_1 0.008292

163 var_164 0.007717

153 var_154 0.007701

114 var_115 0.007586

44 var_44 0.006728

191 var_192 0.006715

Out[23]:

Feature Importance

120 var_121 0.006680

176 var_177 0.006633

190 var_191 0.006288

169 var_170 0.006158

90 var_91 0.006130

148 var_149 0.006097

66 var_67 0.006024

34 var_34 0.005808

91 var_92 0.005768

126 var_127 0.005528

33 var_33 0.005429

88 var_89 0.005157

168 var_169 0.005079

121 var_122 0.005025

106 var_107 0.005000

93 var_94 0.004938

9 var_9 0.004784

171 var_172 0.004748

55 var_56 0.004456

161 var_162 0.004450

18 var_18 0.004422

35 var_35 0.004372

74 var_75 0.004330

85 var_86 0.004301

183 var_184 0.004297

187 var_188 0.004206

70 var_71 0.004193

107 var_108 0.004158

122 var_123 0.004114

36 var_36 0.004061

146 var_147 0.003991

118 var_119 0.003859

89 var_90 0.003831

Feature Importance

154 var_155 0.003812

130 var_131 0.003650

94 var_95 0.003627

111 var_112 0.003619

196 var_197 0.003616

127 var_128 0.003542

166 var_167 0.003509

144 var_145 0.003480

86 var_87 0.003451

47 var_48 0.003442

92 var_93 0.003361

32 var_32 0.003342

117 var_118 0.003259

172 var_173 0.003159

156 var_157 0.003141

57 var_58 0.003104

129 var_130 0.003077

134 var_135 0.003042

65 var_66 0.003039

5 var_5 0.003038

179 var_180 0.003038

28 var_28 0.003037

24 var_24 0.003007

162 var_163 0.002994

51 var_52 0.002988

23 var_23 0.002953

105 var_106 0.002920

185 var_186 0.002920

110 var_111 0.002920

43 var_43 0.002849

113 var_114 0.002849

103 var_104 0.002848

69 var_70 0.002837

Feature Importance

81 var_82 0.002791

133 var_134 0.002787

50 var_51 0.002765

149 var_150 0.002759

31 var_31 0.002752

140 var_141 0.002741

194 var_195 0.002684

11 var_11 0.002683

124 var_125 0.002681

198 var_199 0.002669

48 var_49 0.002660

193 var_194 0.002649

137 var_138 0.002629

3 var_3 0.002595

84 var_85 0.002567

192 var_193 0.002558

76 var_77 0.002557

158 var_159 0.002554

20 var_20 0.002553

64 var_65 0.002547

135 var_136 0.002545

136 var_137 0.002544

160 var_161 0.002544

61 var_62 0.002542

186 var_187 0.002532

16 var_16 0.002524

141 var_142 0.002516

96 var_97 0.002505

59 var_60 0.002498

170 var_171 0.002474

112 var_113 0.002469

27 var_27 0.002464

131 var_132 0.002464

Feature Importance

56 var_57 0.002448

42 var_42 0.002438

104 var_105 0.002432

139 var_140 0.002428

8 var_8 0.002424

73 var_74 0.002421

119 var_120 0.002415

54 var_55 0.002407

25 var_25 0.002406

62 var_63 0.002369

53 var_54 0.002369

150 var_151 0.002357

87 var_88 0.002351

71 var_72 0.002351

175 var_176 0.002349

72 var_73 0.002321

67 var_68 0.002313

143 var_144 0.002307

128 var_129 0.002294

95 var_96 0.002288

155 var_156 0.002286

83 var_84 0.002279

49 var_50 0.002273

151 var_152 0.002273

182 var_183 0.002250

159 var_160 0.002239

30 var_30 0.002236

4 var_4 0.002216

78 var_79 0.002208

37 var_37 0.002180

60 var_61 0.002178

39 var_39 0.002176

17 var_17 0.002169

Feature Importance

97 var_98 0.002164

46 var_47 0.002164

125 var_126 0.002164

101 var_102 0.002161

188 var_189 0.002161

177 var_178 0.002160

123 var_124 0.002155

142 var_143 0.002152

152 var_153 0.002150

195 var_196 0.002145

63 var_64 0.002138

19 var_19 0.002133

29 var_29 0.002133

82 var_83 0.002127

102 var_103 0.002097

38 var_38 0.002096

115 var_116 0.002089

41 var_41 0.002055

7 var_7 0.002042

45 var_46 0.002032

167 var_168 0.002025

14 var_14 0.001994

174 var_175 0.001945

68 var_69 0.001923

15 var_15 0.001914

10 var_10 0.001890

157 var_158 0.001876

116 var_117 0.001870

181 var_182 0.001828

184 var_185 0.001825

99 var_100 0.001818

100 var_101 0.001813

58 var_59 0.001746

Feature Importance

180 var_181 0.001573

feature selection for rf
features_rf = feature_importance_rf[feature_importance_rf['Importance'] > 0.005]
X_train_selected_rf = X_train[features_rf]
X_test_selected_rf = X_test[features_rf]

rf with select features
rf_param_grid = {
 'n_estimators': [100, 200],
 'max_depth': [10, 20, None],
 'min_samples_leaf': [1, 5],
 'max_features': ['sqrt']
}

rf = RandomForestClassifier(class_weight='balanced', random_state=random_seed)

rf_grid_selected = GridSearchCV(
 estimator=rf,
 param_grid=rf_param_grid,
 scoring='recall',
 cv=3,
 n_jobs=-1
)

rf_grid_selected.fit(X_train_selected, y_train)

print("Best parameters:", rf_grid_selected.best_params_)
print("Best CV recall:", rf_grid_selected.best_score_)

rf_best_selected = rf_grid_selected.best_estimator_

Best parameters: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 5,
'n_estimators': 100}
Best CV recall: 0.22739602169981918

Evaluation

SVM Evaluation
SVM predictions
svm_pred = svm_best.predict(X_test)
svm_prob = svm_best.predict_proba(X_test)[:,1]

confusion matrix
svm_cm = confusion_matrix(y_test, svm_pred, labels = svm_best.classes_)
svm_disp = ConfusionMatrixDisplay(confusion_matrix = svm_cm, display_labels = sv
svm_disp.plot(values_format = None)
plt.title("Confusion Matrix – SVM")
plt.show()

prediction scores
print("\nSVM Performance:")
print('Accuracy Score: ', accuracy_score(y_test, svm_pred))

In [24]:

In [25]:

In [29]:

print('Recall Score: ', recall_score(y_test, svm_pred))
print('Precision Score: ', precision_score(y_test, svm_pred))
print('F1 Score: ', f1_score(y_test, svm_pred))

SVM Performance:
Accuracy Score: 0.8210396909027046
Recall Score: 0.7172995780590717
Precision Score: 0.3222239772547781
F1 Score: 0.4446866485013624

Decision Tree Evaluation
decision tree predictions
dt_pred = decision_tree.predict(X_test)
dt_prob = decision_tree.predict_proba(X_test)[:,1]

Confusion Matrix
dt_cm = confusion_matrix(y_test, dt_pred, labels = decision_tree.classes_)
dt_disp_best = ConfusionMatrixDisplay(confusion_matrix=dt_cm, display_labels = d
dt_disp_best.plot(values_format=None)
plt.title("Confusion Matrix – Decision Tree")
plt.show()

Metrics
print("\nDecision Tree Model Performance:")
print("Accuracy:", accuracy_score(y_test, dt_pred))
print("Recall:", recall_score(y_test, dt_pred))
print("Precision:", precision_score(y_test, dt_pred))
print("F1 Score:", f1_score(y_test, dt_pred))

In [31]:

Decision Tree Model Performance:
Accuracy: 0.6833508956796628
Recall: 0.5386779184247539
Precision: 0.16589063345966432
F1 Score: 0.2536633827303585

Decision Tree with Selected Features Evaluation
decision tree predictions
dt_selected_pred = decision_tree_selected.predict(X_test_selected)
dt_selected_prob = decision_tree_selected.predict_proba(X_test_selected)[:,1]

Confusion Matrix
dt_cm = confusion_matrix(y_test, dt_selected_pred, labels = decision_tree_select
dt_disp_best = ConfusionMatrixDisplay(confusion_matrix=dt_cm, display_labels = d
dt_disp_best.plot(values_format=None)
plt.title("Confusion Matrix – Decision Tree")
plt.show()

Metrics
print("\nDecision Tree Model Performance:")
print("Accuracy:", accuracy_score(y_test, dt_selected_pred))
print("Recall:", recall_score(y_test, dt_selected_pred))
print("Precision:", precision_score(y_test, dt_selected_pred))
print("F1 Score:", f1_score(y_test, dt_selected_pred))

In [32]:

Decision Tree Model Performance:
Accuracy: 0.6821566561292589
Recall: 0.5530942334739803
Precision: 0.16821730296225001
F1 Score: 0.25797457974579746

Logistic Regression Evaluation
log predictions
log_pred = logreg_best.predict(X_test)
log_prob = logreg_best.predict_proba(X_test)[:,1]

Confusion Matrix
log_cm_best = confusion_matrix(y_test, log_pred, labels = logreg_best.classes_)
log_disp_best = ConfusionMatrixDisplay(confusion_matrix=log_cm_best, display_lab
log_disp_best.plot(values_format=None)
plt.title("Confusion Matrix – Logistic Regression")
plt.show()

Metrics
print("\nBest Logistic Regression Model Performance:")
print("Accuracy:", accuracy_score(y_test, log_pred))
print("Recall:", recall_score(y_test, log_pred))
print("Precision:", precision_score(y_test, log_pred))
print("F1 Score:", f1_score(y_test, log_pred))

In [33]:

Best Logistic Regression Model Performance:
Accuracy: 0.7752722163681067
Recall: 0.7795358649789029
Precision: 0.27754131196795195
F1 Score: 0.4093426883308715

Random Forest Evaluation
Random Forest Predictions
rf_pred = rf_best.predict(X_test)
rf_prob = rf_best.predict_proba(X_test)[:,1]

Confusion Matrix
rf_cm = confusion_matrix(y_test, rf_pred, labels=rf_best.classes_)
rf_disp = ConfusionMatrixDisplay(confusion_matrix=rf_cm, display_labels=rf_best.
rf_disp.plot(values_format=None)
plt.title("Confusion Matrix – Random Forest")
plt.show()

Evaluation Metrics
print("Random Forest Performance:")
print("Accuracy: ", accuracy_score(y_test, rf_pred))
print("Recall: ", recall_score(y_test, rf_pred))
print("Precision: ", precision_score(y_test, rf_pred))
print("F1 Score: ", f1_score(y_test, rf_pred))

In [34]:

Random Forest Performance:
Accuracy: 0.8990867579908676
Recall: 0.2222222222222222
Precision: 0.48878576952822894
F1 Score: 0.3055354121343969

Random Forest with Select Features Evaluation
Random Forest Predictions
rf_selected_pred = rf_best_selected.predict(X_test_selected)
rf_selected_prob = rf_best_selected.predict_proba(X_test_selected)[:,1]

Confusion Matrix
rf_cm = confusion_matrix(y_test, rf_selected_pred, labels=rf_best_selected.class
rf_disp = ConfusionMatrixDisplay(confusion_matrix=rf_cm, display_labels=rf_best_
rf_disp.plot(values_format=None)
plt.title("Confusion Matrix – Random Forest")
plt.show()

Evaluation Metrics
print("Random Forest Performance:")
print("Accuracy: ", accuracy_score(y_test, rf_selected_pred))
print("Recall: ", recall_score(y_test, rf_selected_pred))
print("Precision: ", precision_score(y_test, rf_selected_pred))
print("F1 Score: ", f1_score(y_test, rf_selected_pred))

In [35]:

Random Forest Performance:
Accuracy: 0.8740779768177028
Recall: 0.3263009845288326
Precision: 0.3573353869849827
F1 Score: 0.3411137658518655

Comparison of all Models
ROC Curve

ROC Curve for all models
fig, ax = plt.subplots(figsize=(6, 6))

RocCurveDisplay.from_predictions(y_test, svm_prob, name="SVM", ax=ax)
RocCurveDisplay.from_predictions(y_test, dt_selected_prob, name="Decision Tree",
RocCurveDisplay.from_predictions(y_test, log_prob, name="LogReg", ax=ax)
RocCurveDisplay.from_predictions(y_test, rf_selected_prob, name="RF", ax=ax)

ax.plot([0, 1], [0, 1], "--", label="Random Chance")
ax.set_xlabel("False Positive Rate")
ax.set_ylabel("True Positive Rate")
ax.set_title("ROC Curve (Positive class = 1)")
ax.legend()
ax.grid(True, linestyle="--", alpha=0.7)

plt.show()

In [36]:

Cumulative Gain Chart

Define a function to compute the cumulative gain curve
def cumulative_gains(y_true, y_prob, resolution=100):
 # Sort predicted probabilities descending
 order = np.argsort(y_prob)[::-1]

 # True labels sorted according to predicted rank
 y_sorted = np.array(y_true)[order]

 # Cumulative true positives
 cum_positives = np.cumsum(y_sorted)

 # Total positives
 total_positives = y_sorted.sum()

 # Evenly spaced proportions of population contacted
 perc_population = np.linspace(0, 1, resolution)

 # Convert % population into cutoffs
 cutoff = (perc_population * len(y_true)).astype(int)

 # Compute gain at each cutoff
 gains = cum_positives[np.clip(cutoff - 1, 0, None)] / total_positives

 return perc_population, gains

In [37]:

Compute curves
x_svm, g_svm = cumulative_gains(y_test, svm_prob)
x_dt, g_dt = cumulative_gains(y_test, dt_selected_prob)
x_log, g_log = cumulative_gains(y_test, log_prob)
x_rf, g_rf = cumulative_gains(y_test, rf_selected_prob)

Plot
plt.figure(figsize=(8, 6))
plt.plot(x_svm, g_svm, label="SVM (RBF)")
plt.plot(x_dt, g_dt, label="Decision Tree")
plt.plot(x_log, g_log, label="Logistic Regression")
plt.plot(x_rf, g_rf, label="Random Forest")
plt.plot([0, 1], [0, 1], '--', label="Baseline")

plt.xlabel("Proportion of population contacted")
plt.ylabel("Proportion of positives captured")
plt.title("Cumulative Gain Curves")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

Precision-Recall Curve

fig, ax = plt.subplots(figsize=(7, 6))

SVM
PrecisionRecallDisplay.from_predictions(
 y_test, svm_prob, name="SVM", ax=ax
)

In [38]:

Decision Tree
PrecisionRecallDisplay.from_predictions(
 y_test, dt_selected_prob, name="Decision Tree", ax=ax
)

Logistic Regression
PrecisionRecallDisplay.from_predictions(
 y_test, log_prob, name="Logistic Regression", ax=ax
)

Random Forest
PrecisionRecallDisplay.from_predictions(
 y_test, rf_selected_prob, name="Random Forest", ax=ax
)

Baseline = positive class prevalence
baseline = y_test.mean()
ax.hlines(baseline, xmin=0, xmax=1, colors='red', linestyles='--', label='Baseli

ax.set_title("Precision–Recall Curve (All Models)")
ax.set_xlabel("Recall")
ax.set_ylabel("Precision")
ax.legend()
ax.grid(True, linestyle="--", alpha=0.6)

plt.show()

Model Comparison Summary

Accuracy
accuracy_svm = accuracy_score(y_test, svm_pred)
accuracy_log = accuracy_score(y_test, log_pred)
accuracy_dt = accuracy_score(y_test, dt_selected_pred)
accuracy_rf = accuracy_score(y_test, rf_selected_pred)

Precision
precision_svm = precision_score(y_test, svm_pred)
precision_log = precision_score(y_test, log_pred)
precision_dt = precision_score(y_test, dt_selected_pred)
precision_rf = precision_score(y_test, rf_selected_pred)

Recall
recall_svm = recall_score(y_test, svm_pred)
recall_log = recall_score(y_test, log_pred)
recall_dt = recall_score(y_test, dt_selected_pred)
recall_rf = recall_score(y_test, rf_selected_pred)

F1-Score
f1_svm = f1_score(y_test, svm_pred)
f1_log = f1_score(y_test, log_pred)
f1_dt = f1_score(y_test, dt_selected_pred)
f1_rf = f1_score(y_test, rf_selected_pred)

AUC Score
auc_svm = roc_auc_score(y_test, svm_prob)
auc_log = roc_auc_score(y_test, log_prob)
auc_dt = roc_auc_score(y_test, dt_selected_prob)
auc_rf = roc_auc_score(y_test, rf_selected_prob)

comparison_df = pd.DataFrame({
 'Model': ['Logistic Regression', 'SVM', 'Decision Tree', 'Random Forest'],

 'Accuracy': [accuracy_log, accuracy_svm, accuracy_dt, accuracy_rf],
 'Precision': [precision_log, precision_svm, precision_dt, precision_rf],
 'Recall': [recall_log, recall_svm, recall_dt, recall_rf],
 'F1-Score': [f1_log, f1_svm, f1_dt, f1_rf],
 'AUC': [auc_log, auc_svm, auc_dt, auc_rf]
})

print("="*80)
print("MODEL PERFORMANCE COMPARISON")
print("="*80)
print(comparison_df.to_string(index=False))
print("="*80)

Identify the best model per metric
print("\nBest Models by Metric:")
print(f"Highest Accuracy: {comparison_df.loc[comparison_df['Accuracy'].idxmax()
 f"({comparison_df['Accuracy'].max():.4f})")

print(f"Highest Precision: {comparison_df.loc[comparison_df['Precision'].idxmax(
 f"({comparison_df['Precision'].max():.4f})")

print(f"Highest Recall: {comparison_df.loc[comparison_df['Recall'].idxmax(),
 f"({comparison_df['Recall'].max():.4f})")

In [39]:

print(f"Highest F1-Score: {comparison_df.loc[comparison_df['F1-Score'].idxmax()
 f"({comparison_df['F1-Score'].max():.4f})")

print(f"Highest AUC: {comparison_df.loc[comparison_df['AUC'].idxmax(), 'Mo
 f"({comparison_df['AUC'].max():.4f})")

print("="*80)

==
MODEL PERFORMANCE COMPARISON
==
 Model Accuracy Precision Recall F1-Score AUC
Logistic Regression 0.775272 0.277541 0.779536 0.409343 0.860398
 SVM 0.821040 0.322224 0.717300 0.444687 0.858406
 Decision Tree 0.682157 0.168217 0.553094 0.257975 0.659945
 Random Forest 0.874078 0.357335 0.326301 0.341114 0.768369
==

Best Models by Metric:
Highest Accuracy: Random Forest (0.8741)
Highest Precision: Random Forest (0.3573)
Highest Recall: Logistic Regression (0.7795)
Highest F1-Score: SVM (0.4447)
Highest AUC: Logistic Regression (0.8604)
==

The Logistic Regression model achieved the highest recall score (~78%), which is the
most important metric for our scenario because accurately identifying customers likely to
apply for a business credit is the primary goal. To balance capturing these customers
while avoiding unnecessary allocation of resources to those who will not apply, we will
tune the model’s probability threshold to maximize the F1-score. Using the F1-score
ensures that we account for both recall (correctly identifying potential applicants) and
precision (avoiding false positives), aligning the model’s performance with the business
objectives.

The consistently low precision across all models indicates that a large proportion of
positive predictions are false positives.

Threshold Tuning for the Best Model
log_prob = logreg_best.predict_proba(X_test)[:,1]
y_true = y_test # must match X_test_scaled

thresholds = []
recalls = []
precisions = []
f1_scores = []

for t in [i/100 for i in range(1, 100)]: # thresholds 0.01 → 0.99
 y_pred = (log_prob >= t).astype(int)

 thresholds.append(t)
 recalls.append(recall_score(y_true, y_pred))
 precisions.append(precision_score(y_true, y_pred))
 f1_scores.append(f1_score(y_true, y_pred))

In [40]:

get best f1-score
best_threshold = thresholds[f1_scores.index(max(f1_scores))]
print("Best threshold for F1:", best_threshold)

Best threshold for F1: 0.76

y_pred_test = (log_prob >= best_threshold).astype(int)

confusion matrix
final_logreg_cm = confusion_matrix(y_test, y_pred_test, labels = logreg_best.cla
final_logreg_disp = ConfusionMatrixDisplay(confusion_matrix = final_logreg_cm, d
final_logreg_disp.plot(values_format = None)
plt.title("Confusion Matrix – Logistic Regression")
plt.show()

prediction scores
print("\nLogistic Regression Performance:")
print('Accuracy Score: ', accuracy_score(y_test, y_pred_test))
print('Recall Score: ', recall_score(y_test, y_pred_test))
print('Precision Score: ', precision_score(y_test, y_pred_test))
print('F1 Score: ', f1_score(y_test, y_pred_test))

Logistic Regression Performance:
Accuracy Score: 0.8966631541974007
Recall Score: 0.5168776371308017
Precision Score: 0.4838709677419355
F1 Score: 0.499829989799388

Tuning the probability threshold to maximize the F1-score of the Logistic Regression
model will reduce the number of true positives the model is able to identify, but greatly
decrease the number of false positive predictions made.

In [41]:

In [42]:

In [43]:

store the final model
final_model = logreg_best
final_threshold = best_threshold

It is important to note that due to computational limitations, an undersampled version of
the training data was used to train the SVM model. The SVM may potentially perform
better if trained on the entire training data (or a balanced class data), such as the other
models, but this was not possible due to the time it would take to train the model on the
available computers.

In [44]:

