Customer Credit Application Prediction

System

Import required Llibraries
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import confusion_matrix, classification_report, roc_curve,

from sklearn.impute import SimpleImputer
from imblearn import over_sampling

from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler

from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer

from sklearn.feature_selection import mutual_info_classif
from sklearn.tree import DecisionTreeClassifier, plot_tree

import kds
from imblearn.pipeline import Pipeline

Data Preparation

Load in data
data = pd.read_csv('datafile_full.csv')

data.head()

ID_code target var_ 0 var_1 var_2
0 1251720 0 10.6216 0.1667 15.5182
1 93976.0 0 13.1492 29210 6.0275
2 128558.0 0 7.9077 4.3397 8.5575
3 1385820 0 6.1757 -1.5021 16.5598
4 109242.0 0 10.6910 -6.5074 11.0558

5 rows x 202 columns

4 G

Overview of data
pd.set_option('display.max_columns', None)
print(data.info())

var_3
10.1634
5.7623
4.7743
8.9091

44293

var_4 var_5
9.8419 -0.1156
12.5731 7.9090
10.3623 -6.6784
8.0741 5.4070

8.7645 -15.5975

var_6
7.4348
5.3149
5.9665
5.3698

5.6018

var

14.69.

17.84.

17.23

10.87.

20.13!

print(str('Number of rows: ') + str(print(data.shape[0])))
print(str('Number of rows: ') + str(print(data.shape[1])))

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, © to 99999
Columns: 202 entries, ID_code to var_199
dtypes: float64(201), int64(1)

memory usage: 154.1 MB

None

100000

Number of rows: None

202

Number of rows: None

NA values
data.isna().any(axis=1).sum()

np.int64(40072)

check the variables for NA values
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
data.isna().sum().sort_values(ascending = False)

var_45 40003
var_96 5004
var_76 5003
var_18
var_12
var_33
var_16
var_134
var_50
var_41
var_47
var_9
var_39
var_8
var_95
var_118
var_125
var_108
var_77
var_107
var_117
var_93
var_7
var_10
var_1
var_68
var_46
var_48
var_49
var_51
var_25
var_61
var_62
var_53
var_27
var_37
var_59
var_70
var_22
var_15
var_17
var_19
var_136
var_138
var_141
var_140
var_150
var_102
var_103
var_90
var_120
var_123
var_121
var_128
var_100
var_99
var_105
var_1e4
var_87
var_79

R R RPRRRPRRPRRPRRRRPRRRPRRPRRPRRPRRPRRRRPRRRPRRARRPRRPRRRRERRPRREPRREBNNMNNNNNMNNNMNNMNNNNMNNNNMNNWWWWWWO

var_85
var_94
var_97
var_24
var_11
var_13
var_184
var_166
var_180
var_185
var_173
var_6
var_4
var_5
var_71
var_69
var_66
var_67
var_65
var_64
var_60
var_63
var_56
var_58
var_57
var_43
var_44
var_52
var_54
var_55
var_40
var_42
var_20
var_14
var_23
var_21
var_28
var_26
var_31
var_30
var_29
var_32
var_35
var_34
var_36
var_38
target
ID_code
var_2
var_0
var_3
var_89
var_91
var_92
var_101
var_98
var_88
var_81
var_111
var_110

O O 0O 0O 0O 0000000000000 RRPRRRPRRPRERPRRERRELR

var_106
var_109
var_119
var_116
var_114
var_115
var_113
var_112
var_75

var_72

var_78

var_73

var_80

var_83

var_86

var_84

var_82

var_74

var_135
var_133
var_132
var_131
var_129
var_130
var_126
var_127
var_124
var_122
var_146
var_145
var_143
var_144
var_142
var_139
var_151
var_152
var_154
var_153
var_156
var_157
var_158
var_155
var_159
var_160
var_162
var_161
var_147
var_148
var_149
var_137
var_167
var_165
var_164
var_163
var_171
var_172
var_170
var_168
var_175
var_176

O 0O 0O 0O 0O 0000000000000

var_178
var_177
var_179
var_181
var_174
var_169
var_183
var_182
var_186
var_187
var_188
var_189
var_190
var_191
var_192
var_193
var_194
var_195
var_196
var_197
var_198
var_199

dtype:

summmary statistics

O 0O 0O 0O 0O 00O

int6e4

data.describe()

count
mean
std
min
25%
50%
75%

max

4 @&

ID_code
100000.000000
99916.419220
57689.007176
2.000000
49950.750000
99884.500000
149756.500000

200000.000000

target
100000.000000
0.100380
0.300508
0.000000
0.000000
0.000000
0.000000

1.000000

drop var_45 (has 40.000 NAs)

data = data.drop(columns =
print(str('Number of Remaining NAs:

Number of Remaining NAs: 5101

["var_45",

var_0
100000.000000
10.681089
3.042589
0.408400
8.461025
10.533900
12.754825

19.737900

total target varibale distribution
data['target'].value_counts()

target
0 89962
1 10038

Name: count, dtype: int64

'ID_code'])
') + str(data.isna().any(axis =

var_1
99998.000000
-1.645731
4.057037
-14.091000
-4.776975
-1.623700
1.355375

10.376800

var_2
100000.000000
10.717789
2.642314
2.117100
8.723400
10.589800
12.516925

19.353000

1000

1).sum()))

check the relationship of remaining missing values with the target variable
remaining na = data[data.isna().any(axis = 1)]

proportion of the target value for remaining na values
print(str('Number of observations for target value:') + str(remaining_na['target
print()
print(str('Proportion of observations for target value:') + str(remaining_na['tz

Number of observations for target value:target
0 4543

1 558

Name: count, dtype: int64

Proportion of observations for target value:target
0 0.89061

1 0.10939

Name: proportion, dtype: float64

Removing the remaining rows with NA values would only result in removing roughly 5%

of observations that belong to the target variable category of 1 (the minority class). For

this reason, it is acceptable to remove all remaining rows with NA values.

drop remaining NAs
data = data.dropna()
print(str('Number of Remaining NAs: ') + str(data.isna().any(axis = 1).sum()))

Number of Remaining NAs: ©

number of columns and rows after removing NAs
print(str('Number of rows: ') + str(data.shape[90]))
print(str('Number of columns: ') + str(data.shape[1]))

Number of rows: 94899
Number of columns: 200

print('Proportion of classes of target variable')
data["target'].value_counts(normalize = True)

Proportion of classes of target variable

target

0 0.900104

1 0.099896

Name: proportion, dtype: floaté64

Training and Test Sets

partition variables
X = data.drop(columns = 'target')
y = data['target']

random_seed = 2

X_train, X_test, y_train, y test = train_test_split(X, y, test_size = 0.3, randc

Information Gain

Use mutual_1info_classif to compute information gain values of the attributes
IG_scores = mutual_info_classif(X_train, y train, random_state=random_seed)

Create a DataFrame with the results

weights = pd.DataFrame({
'attr_importance': IG_scores

}, index=X_train.columns)

Use the features with IG more than ©.004
weights = weights[weights['attr_importance'] > 0.004]

Extract the names of those features
features = weights.index.tolist()

print(f"Number of features with positive information gain: {len(features)}")
print(f"\nFeatures: {features}")
print(f"\nInformation gain values:\n{weights.sort_values('attr_importance', asce

Number of features with positive information gain: 6
Features: ['var_12', ‘var_22', 'var_81', 'var_110', 'var_146', 'var_164']

Information gain values:
attr_importance

var_12 0.004983
var_81 0.004854
var_146 0.004386
var_22 0.004236
var_164 0.004189
var_110 0.004013

The information gain of each individual variable is extremely low. Therefore, they do not
contain much information in predicting the target variable. We will train the models on

all remaining variables.

Modeling

SVM

define pipeline
pipeline = Pipeline(steps=[
("undersample’, RandomUnderSampler(
sampling strategy=0.67,
random_state=random_seed

))s
("scaler', StandardScaler()),
("svm', SVC(

kernel="rbf",
random_state=random_seed,
probability=True
))
D

set parameters
param_grid = {

'svm__C': [0.1, 1, 6]

grid search

svm_grid_search = GridSearchCV(
estimator=pipeline,
param_grid=param_grid,
cv=3,
scoring="recall’,
n_jobs=-1

svm_grid_search.fit(X_train, y_train)

results
print("Best C:", svm_grid_search.best_params_['svm_C'])
print("Best recall:", svm_grid_search.best_score_)

svm_best = svm_grid_search.best_estimator_

Best C: 6
Best recall: 0.7025316455696201

Decision Tree

decision tree model

decision_tree = DecisionTreeClassifier(
criterion="entropy',
max_depth=12,
min_samples_leaf=50,
min_samples_split=300,
class_weight="balanced’,
random_state=random_seed

train
decision_tree.fit(X_train, y_train)

v DecisionTreeClassifier

plit=300,

random_state=2)

DecisionTreeClassifier(class_weight="balanced’, criterion="entropy’,
max_depth=12, min_samples_leaf=50, min_samples_s

feature importance dt
feature = X_train.columns
f_importance_dt = decision_tree.feature_importances_

feature_importance_dt = pd.DataFrame({'Feature':feature,

feature_importance_dt

'Importance’ :f_importan

https://scikit-learn.org/1.6/modules/generated/sklearn.tree.DecisionTreeClassifier.html

80

138

12

109

26

22

98

173

52

79

108

145

77

189

147

165

21

47

168

75

153

178

40

197

35

46

31

44

Feature
var_81
var_139
var_12
var_110
var_26
var_22
var_99
var_174
var_53
var_6
var_80
var_109
var_146
var_78
var_190
var_0
var_148
var_166
var_21
var_1
var_48
var_169
var_76
var_154
var_179
var_40
var_2
var_198
var_35
var_47
var_3
var_31

var_44

Importance
0.083294
0.081786
0.058914
0.046921
0.039333
0.033488
0.032903
0.030775
0.030365
0.023812
0.021267
0.020846
0.019426
0.018784
0.016429
0.015374
0.015296
0.014981
0.014768
0.014680
0.013757
0.013327
0.012955
0.012771
0.012749
0.012350
0.011847
0.011818
0.011523
0.008017
0.007733
0.007488

0.007318

Feature Importance

90 var 91 0.007313
34 var_34 0.007056
176 var_177 0.007031
164 var_165 0.006995
103 var_104 0.006714
132 var_133 0.006503
70 var_71 0.006415
121 var_122 0.006311
198 var_199 0.006143
148 var_149 0.006065
32 var32 0.005928
163 var_164 0.005767
122 var_123 0.005551
76 var 77 0.005379
162 var_163 0.005314
166 var_167 0.005200
81 var 82 0.005068
190 var_191 0.004948
146 var_147 0.004831
169 var_170 0.004713
156 var_157 0.004652
28 var_28 0.004312
85 var_86 0.004199
71 wvar.72 0.004058
180 var_181 0.003993
66 var 67 0.003977
126 var_127 0.003817
191 var_192 0.003687
106 var_107 0.003644
39 var39 0.003636
5 var_5 0.003611
133 var_134 0.003347

16 var_ 16 0.003163

Feature Importance

25 var 25 0.003101
127 var_128 0.002847
187 var_188 0.002816
8 var_8 0.002767
18 var_18 0.002753
93 var %4 0.002739
196 var_197 0.002703
124 var_125 0.002660
141 var_142 0.002637
123 var_124 0.002569
24 var 24 0.002505
42 var 42 0.002482
97 var_98 0.002427
152 var_153 0.002260
95 var_ 96 0.002054
36 var_36 0.002042
172 var_173 0.001993
89 var 90 0.001931
171 var_172 0.001896
158 wvar_159 0.001866
182 var_183 0.001829
94 var 95 0.001525
140 var_141 0.001158
69 var_ 70 0.000000
65 var 66 0.000000
63 var 64 0.000000
64 var_65 0.000000
61 var. 62 0.000000
62 var 63 0.000000
58 wvar.59 0.000000
68 var_69 0.000000
67 var 68 0.000000

23 var 23 0.000000

30

33

37

38

13

11

10

17

15

20

19

57

60

59

56

55

53

54

41

49

51

50

48

45

43

14

29

27

82

86

Feature
var_30
var_33
var_37
var_38

var 9
var_13
var_11
var_10
var_17
var_15
var_20
var_19

var_4
var_58
var_61
var_60
var_57
var_56
var_54
var_55
var_41
var_50
var_52
var_51
var_49
var_46
var_43
var_14

var_7
var_29
var_27
var_83

var_87

Importance
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000

Feature Importance

84 var85 0.000000
83 var 84 0.000000
78 var.79 0.000000
134 wvar_135 0.000000
131 var_132 0.000000
129 var_130 0.000000
130 var_131 0.000000
128 var_129 0.000000
120 var_121 0.000000
119 var_120 0.000000
125 var_126 0.000000
111 var_112 0.000000
112 var_113 0.000000
113 var_114 0.000000
114 wvar_115 0.000000
115 wvar_116 0.000000
116 var 117 0.000000
117 var_118 0.000000
118 wvar_119 0.000000
110 var_111 0.000000
107 var_108 0.000000
104 var_105 0.000000
105 var_106 0.000000
74 var 75 0.000000
73 var 74 0.000000
72 var_73 0.000000
87 var_88 0.000000
91 var 92 0.000000
92 var 93 0.000000
88 var_ 89 0.000000
96 var 97 0.000000
99 wvar_100 0.000000

100 var_101 0.000000

Feature Importance
101 var_102 0.000000
102 var_103 0.000000
160 var_161 0.000000
159 var_160 0.000000
161 var_162 0.000000
157 var_158 0.000000
154 var_155 0.000000
151 wvar_152 0.000000
155 var_156 0.000000
135 wvar_136 0.000000
142 var_143 0.000000
139 var_140 0.000000
136 var_137 0.000000
137 var_138 0.000000
143 var_144 0.000000
144 var_145 0.000000
149 var_150 0.000000
150 var_151 0.000000
181 wvar_182 0.000000
179 var_180 0.000000
175 var_176 0.000000
177 var_178 0.000000
170 var_171 0.000000
167 var_168 0.000000
174 var_ 175 0.000000
183 var_184 0.000000
188 wvar_189 0.000000
184 var_185 0.000000
185 wvar_186 0.000000
186 var_187 0.000000
194 var_195 0.000000
193 var_194 0.000000

192 var_193 0.000000

Feature Importance

195 var_196 0.000000

feature selection for decision tree

feature_selection = feature_importance_dt[feature_importance_dt['Importance'] >
X_train_selected = X_train[feature_selection]

X_test_selected = X_test[feature_selection]

decision tree model with select features
decision_tree_selected = DecisionTreeClassifier(
criterion="entropy’,
max_depth=12,
min_samples_leaf=50,
min_samples split=300,
class_weight="'balanced’,
random_state=random_seed

train
decision_tree_selected.fit(X_train_selected, y_train)

v DecisionTreeClassifier

DecisionTreeClassifier(class_weight="balanced', criterion="entropy',
max_depth=12, min_samples_leaf=50, min_samples_s
plit=300,

random_state=2)

Logistic Regression

define pipeline
pipeline = Pipeline(steps=[
("scaler', StandardScaler()),
("logreg', LogisticRegression(
penalty="12",
solver="1liblinear",
class_weight="balanced",
random_state=random_seed,
max_iter=1000
))
D

sets parameters
log_param_grid = {
'logreg_C': [0.01, 0.1, 1, 19]

}

grid search

log grid_search = GridSearchCV(
estimator=pipeline,
param_grid=log_param_grid,
cv=3,
scoring="recall",
n_jobs=-1

https://scikit-learn.org/1.6/modules/generated/sklearn.tree.DecisionTreeClassifier.html

log_grid_search.fit(X_train, y_train)

results
print("Best C:", log_grid_search.best_params_['logreg C'])
print("Best CV Recall:", log grid_search.best_score)

logreg best = log_grid_search.best_estimator_

Best C: 0.01
Best CV Recall: 0.7689873417721519

Random Forest

rf_param_grid = {
'n_estimators': [100, 200],
'max_depth': [10, 20, None],
'min_samples_leaf': [1, 5],
'max_features': ['sqrt']

rf = RandomForestClassifier(class_weight='balanced', random_state=random_seed)

rf_grid = GridSearchCV(
estimator=rf,
param_grid=rf_param_grid,
scoring="recall’,
cv=3,
n_jobs=-1

rf_grid.fit(X_train, y_train)

print("Best parameters:", rf_grid.best_params_)
print("Best CV recall:", rf_grid.best_score_)

rf_best = rf_grid.best_estimator_

Best parameters: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 5,
'n_estimators': 100}
Best CV recall: 0.09433393610608799

feature importance rf
feature = X_train.columns
f_importance_rf = rf_best.feature_importances_

feature_importance_rf = pd.DataFrame({'Feature':feature, 'Importance':f_importan

feature_importance_rf

Feature Importance

80 var 81 0.049323
138 wvar_139 0.037102
12 var 12 0.027238
109 var_110 0.025602
26 var_26 0.022673
52 wvar 53 0.020696
22 var22 0.019217
6 var_6 0.018396
145 var_146 0.016912
165 var_166 0.015644
98 var 99 0.015356
79 var_ 80 0.014528
75 var_76 0.014309
77 var_78 0.013063
108 var_109 0.013028
173 var_174 0.012854
21 var_21 0.012183
189 wvar_190 0.011837
13 wvar_13 0.011738
2 var_2 0.011531
147 var_148 0.011447
178 var_179 0.011357
132 var_133 0.010906
197 var_198 0.010567
40 var 40 0.009614
0 var_0 0.008865
164 var_165 0.008676
1 var_1 0.008292
163 var_164 0.007717
153 var_154 0.007701
114 var_115 0.007586
44 var 44 0.006728

191 var_192 0.006715

Feature Importance

120 var_121 0.006680
176 var_177 0.006633
190 var_191 0.006288
169 var_170 0.006158
90 var 91 0.006130
148 var_149 0.006097
66 var 67 0.006024
34 var_ 34 0.005808
91 var 92 0.005768
126 var_127 0.005528
33 wvar33 0.005429
88 var_ 89 0.005157
168 var_169 0.005079
121 var_122 0.005025
106 var_107 0.005000
93 var % 0.004938
9 var 9 0.004784
171 var_172 0.004748
55 var_56 0.004456
161 var_162 0.004450
18 var_18 0.004422
35 var35 0.004372
74 var 75 0.004330
85 var_86 0.004301
183 var_184 0.004297
187 var_188 0.004206
70 var_71 0.004193
107 wvar_108 0.004158
122 var_123 0.004114
36 var_36 0.004061
146 var_147 0.003991
118 wvar_119 0.003859

89 var 90 0.003831

Feature Importance

154 var_155 0.003812
130 var_131 0.003650
94 var 95 0.003627
111 var_112 0.003619
196 var_197 0.003616
127 var_128 0.003542
166 var_167 0.003509
144 var_145 0.003480
86 var 87 0.003451
47 var 48 0.003442
92 var 93 0.003361
32 var32 0.003342
117 wvar_118 0.003259
172 var_173 0.003159
156 var_157 0.003141
57 var 58 0.003104
129 var_130 0.003077
134 var_135 0.003042
65 var_66 0.003039
5 var_5 0.003038
179 var_180 0.003038
28 var_28 0.003037
24 var 24 0.003007
162 var_163 0.002994
51 var.52 0.002988
23 var.23 0.002953
105 var_106 0.002920
185 var_186 0.002920
110 var_111 0.002920
43 var 43 0.002849
113 var_114 0.002849
103 var_104 0.002848

69 var 70 0.002837

Feature Importance

81 var82 0.002791
133 var_134 0.002787
50 var 51 0.002765
149 var_150 0.002759
31 var_31 0.002752
140 var_141 0.002741
194 var_195 0.002684
1 var_11 0.002683
124 var_125 0.002681
198 var_199 0.002669
48 var 49 0.002660
193 var_194 0.002649
137 var_138 0.002629
3 var_3 0.002595
84 var85 0.002567
192 wvar_193 0.002558
76 var 77 0.002557
158 wvar_159 0.002554
20 var 20 0.002553
64 var 65 0.002547
135 wvar_136 0.002545
136 var_137 0.002544
160 var_161 0.002544
61 var. 62 0.002542
186 var_187 0.002532
16 var_16 0.002524
141 var_142 0.002516
96 var 97 0.002505
59 var 60 0.002498
170 var_171 0.002474
112 var_113 0.002469
27 var 27 0.002464

131 var_132 0.002464

56

42

104

139

73

119

54

25

62

53

150

87

71

175

72

67

143

128

95

155

83

49

151

182

159

30

78

37

60

39

17

Feature
var_57
var_42

var_105

var_140
var_8
var_74
var_120
var_55
var_25
var_63
var_54
var_151
var_88
var_72
var_176
var_73
var_68
var_144
var_129
var_96
var_156
var_84
var_50
var_152
var_183
var_160
var_30
var_4
var_79
var_37
var_61
var_39

var_17

Importance
0.002448
0.002438
0.002432
0.002428
0.002424
0.002421
0.002415
0.002407
0.002406
0.002369
0.002369
0.002357
0.002351
0.002351
0.002349
0.002321
0.002313
0.002307
0.002294
0.002288
0.002286
0.002279
0.002273
0.002273
0.002250
0.002239
0.002236
0.002216
0.002208
0.002180
0.002178
0.002176

0.002169

Feature Importance

97 var 98 0.002164
46 var_47 0.002164
125 var_126 0.002164
101 var_102 0.002161
188 wvar_189 0.002161
177 var_178 0.002160
123 var_124 0.002155
142 var_143 0.002152
152 var_153 0.002150
195 var_196 0.002145
63 var 64 0.002138
19 var 19 0.002133
29 var29 0.002133
82 wvar.83 0.002127
102 var_103 0.002097
38 var_38 0.002096
115 var_116 0.002089
41 var_41 0.002055
7 var_7 0.002042
45 var 46 0.002032
167 var_168 0.002025
14 var 14 0.001994
174 var_175 0.001945
68 var_69 0.001923
15 var_15 0.001914
10 var_10 0.001890
157 wvar_158 0.001876
116 var_117 0.001870
181 var_182 0.001828
184 var_185 0.001825
99 var_100 0.001818
100 var_101 0.001813

58 var_59 0.001746

Feature Importance

180 var_181 0.001573

feature selection for rf

features_rf = feature_importance_rf[feature_importance_ rf['Importance'] > 0.005]
X_train_selected_rf = X_train[features_rf]

X_test_selected_rf = X_test[features_rf]

rf with select features

rf_param_grid = {
'n_estimators': [100, 200],
'max_depth': [10, 20, None],
'min_samples_leaf': [1, 5],
'max_features': ['sqrt']

rf = RandomForestClassifier(class_weight="balanced', random_state=random_seed)

rf_grid_selected = GridSearchCV(
estimator=rf,
param_grid=rf_param_grid,
scoring="'recall’,
cv=3,
n_jobs=-1

rf_grid_selected.fit(X_train_selected, y_train)

print("Best parameters:", rf_grid_selected.best_params_)
print("Best CV recall:", rf_grid_selected.best_score_)

rf_best_selected = rf_grid_selected.best_estimator_

Best parameters: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 5,
'n_estimators': 100}
Best CV recall: 0.22739602169981918

Evaluation

SVM Evaluation

SVM predictions
svm_pred = svm_best.predict(X_test)
svm_prob = svm_best.predict_proba(X_test)[:,1]

confusion matrix

svm_cm = confusion_matrix(y_test, svm_pred, labels = svm_best.classes_)

svm_disp = ConfusionMatrixDisplay(confusion_matrix = svm_cm, display labels = sy
svm_disp.plot(values_format = None)

plt.title("Confusion Matrix - SVM")

plt.show()

prediction scores
print("\nSVM Performance:")
print('Accuracy Score: ', accuracy_score(y_test, svm_pred))

print('Recall Score: ', recall _score(y_test, svm_pred))
print('Precision Score: ', precision_score(y_test, svm_pred))
print('F1 Score: ', f1_score(y_test, svm_pred))

Confusion Matrix - SVM

- 20000

- 17500

15000

12500

10000

True lahel

7500

5000

2500

Predicted label

SVM Performance:

Accuracy Score: 0.8210396909027046
Recall Score: ©0.7172995780590717
Precision Score: 0.3222239772547781
F1l Score: 0.4446866485013624

Decision Tree Evaluation

decision tree predictions
dt_pred = decision_tree.predict(X_test)
dt_prob = decision_tree.predict_proba(X_test)[:,1]

Confusion Matrix

dt_cm = confusion_matrix(y_test, dt_pred, labels = decision_tree.classes)
dt_disp_best = ConfusionMatrixDisplay(confusion_matrix=dt_cm, display labels

dt _disp best.plot(values_format=None)
plt.title("Confusion Matrix - Decision Tree")
plt.show()

Metrics

print("\nDecision Tree Model Performance:")
print("Accuracy:", accuracy_score(y_test, dt_pred))
print("Recall:", recall score(y_test, dt_pred))
print("Precision:", precision_score(y_test, dt_pred))
print("F1 Score:", fl1_score(y_test, dt_pred))

d

Confusion Matrix - Decision Tree

- 16000

- 14000

12000

10000

True label

8000

6000

4000

2000

Predicted label

Decision Tree Model Performance:
Accuracy: 0.6833508956796628
Recall: ©.5386779184247539
Precision: 0.16589063345966432
F1 Score: 0.2536633827303585

Decision Tree with Selected Features Evaluation

decision tree predictions
dt_selected_pred = decision_tree_selected.predict(X_test_selected)
dt_selected _prob = decision_tree_selected.predict_proba(X_test_selected)[:,1]

Confusion Matrix

dt_cm = confusion_matrix(y_test, dt_selected pred, labels = decision_tree_select
dt_disp_best = ConfusionMatrixDisplay(confusion_matrix=dt_cm, display_ labels = ¢
dt_disp_best.plot(values_format=None)

plt.title("Confusion Matrix - Decision Tree")

plt.show()

Metrics

print("\nDecision Tree Model Performance:")

print("Accuracy:", accuracy_score(y_test, dt_selected_pred))
print("Recall:", recall _score(y_test, dt_selected_pred))
print("Precision:", precision_score(y_test, dt_selected_pred))
print("F1 Score:", fl1_score(y_test, dt_selected _pred))

Confusion Matrix - Decision Tree

16000

14000

12000

10000

True label

8000

6000

4000

2000

Predicted label

Decision Tree Model Performance:
Accuracy: 0.6821566561292589
Recall: ©.5530942334739803
Precision: 0.16821730296225001
F1 Score: 0.25797457974579746

Logistic Regression Evaluation

Llog predictions
log pred = logreg best.predict(X_test)
log prob = logreg best.predict_proba(X_test)[:,1]

Confusion Matrix

log cm_best = confusion_matrix(y_test, log pred, labels = logreg best.classes)
log disp_best = ConfusionMatrixDisplay(confusion_matrix=1log cm_best, display_lakt
log disp_best.plot(values_format=None)

plt.title("Confusion Matrix - Logistic Regression")

plt.show()

Metrics

print("\nBest Logistic Regression Model Performance:")
print("Accuracy:", accuracy_score(y_test, log pred))
print("Recall:", recall_score(y_test, log pred))
print("Precision:", precision_score(y_test, log pred))
print("F1 Score:", fl1_score(y_test, log pred))

Confusion Matrix - Logistic Regression

17500

15000

12500

10000

True label

7500

3000

2500

Predicted label

Best Logistic Regression Model Performance:
Accuracy: 0.7752722163681067

Recall: 0.7795358649789029

Precision: 0.27754131196795195

F1 Score: 0.4093426883308715

Random Forest Evaluation

Random Forest Predictions
rf_pred = rf_best.predict(X_test)
rf_prob = rf_best.predict_proba(X_test)[:,1]

Confusion Matrix

rf_cm = confusion_matrix(y_test, rf_pred, labels=rf_best.classes_)

rf_disp = ConfusionMatrixDisplay(confusion_matrix=rf_cm, display_labels=rf_best.
rf_disp.plot(values_format=None)

plt.title("Confusion Matrix - Random Forest")

plt.show()

Evaluation Metrics
print("Random Forest Performance:")

print("Accuracy: , accuracy_score(y_test, rf_pred))

print("Recall: , recall score(y_test, rf_pred))

"

print("Precision: ", precision_score(y_test, rf_pred))

"

print("F1 Score: , fl_score(y_test, rf_pred))

Confusion Matrix - Random Forest

- 20000

15000

True label

10000

5000

Predicted label

Random Forest Performance:
Accuracy: 0.8990867579908676
Recall: 0.2222222222222222
Precision: ©.48878576952822894
F1 Score: 0.3055354121343969

Random Forest with Select Features Evaluation

Random Forest Predictions
rf_selected_pred = rf_best_selected.predict(X_test_selected)
rf_selected_prob = rf_best_selected.predict_proba(X_test_selected)[:,1]

Confusion Matrix

rf_cm = confusion_matrix(y_test, rf_selected pred, labels=rf_best_selected.class
rf_disp = ConfusionMatrixDisplay(confusion_matrix=rf_cm, display_labels=rf_best_
rf_disp.plot(values_format=None)

plt.title("Confusion Matrix - Random Forest")

plt.show()

Evaluation Metrics
print("Random Forest Performance:")

print("Accuracy: , accuracy_score(y_test, rf_selected_pred))

print("Recall: , recall score(y_test, rf_selected_pred))

print("Precision: ", precision_score(y_test, rf_selected_pred))

print("F1 Score: , fl_score(y_test, rf_selected_pred))

True label

Confusion Matrix - Random Forest

- 20000

15000

10000

5000

Predicted label

Random Forest Performance:

Accuracy: 0.8740779768177028
Recall: 0.3263009845288326
Precision: ©.3573353869849827
F1 Score: 0.3411137658518655

Comparison of all Models

ROC Curve

ROC Curve for all models
fig, ax = plt.subplots(figsize=(6, 6))

RocCurveDisplay.from_predictions(y_test, svm_prob, name="SVM", ax=ax)
RocCurveDisplay.from_predictions(y_test, dt_selected _prob, name="Decision Tree",
RocCurveDisplay.from_predictions(y_test, log prob, name="LogReg", ax=ax)
RocCurveDisplay.from_predictions(y_test, rf_selected_prob, name="RF", ax=ax)

ax

ax

ax.

.plot([0, 1], [0, 1], "--", label="Random Chance")
ax.
ax.
ax.

set_xlabel("False Positive Rate")
set_ylabel("True Positive Rate")

set_title("ROC Curve (Positive class = 1)")
.legend()
grid(True, linestyle="--", alpha=0.7)

plt.show()

ROC Curve (Positive class = 1)

True Positive Rate

— SVM (AUC = 0.86)
s ——— Decision Tree (AUC = 0.66)

0.2 1 #~

LogReg (AUC = 0.86)
P RF (AUC = 0.77)
——=- Random Chance

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Cumulative Gain Chart

Define a function to compute the cumulative gain curve
def cumulative gains(y_true, y prob, resolution=100):

Sort predicted probabilities descending

order = np.argsort(y_prob)[::-1]

True labels sorted according to predicted rank
y_sorted = np.array(y_true)[order]

Cumulative true positives
cum_positives = np.cumsum(y_sorted)

Total positives
total_positives = y sorted.sum()

Evenly spaced proportions of population contacted
perc_population = np.linspace(®, 1, resolution)

Convert % population into cutoffs
cutoff = (perc_population * len(y_true)).astype(int)

Compute gain at each cutoff
gains = cum_positives[np.clip(cutoff - 1, @, None)] / total positives

return perc_population, gains

Proportion of positives captured

Co
X_SV

x_dt, g dt = cumulative _gains(y_test, dt_selected_prob)
x_log, g log = cumulative_gains(y_test, log prob)
x_rf, g rf = cumulative gains(y_test, rf_selected_prob)
Plot
plt.figure(figsize=(8, 6))
plt.plot(x_svm, g svm, label="SVM (RBF)")
plt.plot(x_dt, g dt, 1label="Decision Tree")
plt.plot(x_log, g log, label="Logistic Regression")
plt.plot(x_rf, g _rf, label="Random Forest")
plt.plot([@, 1], [@, 1], '--', label="Baseline")
plt.xlabel("Proportion of population contacted")
plt.ylabel("Proportion of positives captured")
plt.title("Cumulative Gain Curves")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
Cumulative Gain Curves

1.0 4 —— SVM (RBF)

—— Decision Tree

—— Logistic Regression

—— Random Forest

——- Baseline
0.8

0.6 1

0.4

0.2 4

0.0

mpute curves
m, g _svm = cumulative_gains(y_test, svm_prob)

T T
0.0 0.2 0.4 0.6

Proportion of population contacted

Precision-Recall Curve

fig,

ax = plt.subplots(figsize=(7, 6))

SVM

Prec

)

isionRecallDisplay.from_predictions(
y_test, svm_prob, name="SVM", ax=ax

1.0

Decision Tree
PrecisionRecallDisplay.from_predictions(
y_test, dt_selected_prob, name="Decision Tree", ax=ax

)

Logistic Regression
PrecisionRecallDisplay.from_predictions(
y_test, log prob, name="Logistic Regression", ax=ax

)

Random Forest
PrecisionRecallDisplay.from_predictions(
y_test, rf_selected_prob, name="Random Forest", ax=ax

)

Baseline = positive class prevalence
baseline = y_test.mean()
ax.hlines(baseline, xmin=0, xmax=1, colors='red', linestyles='--', label='Baseli

ax.set_title("Precision-Recall Curve (All Models)")
ax.set_xlabel("Recall")
ax.set_ylabel("Precision")

Precision

ax.legend()
ax.grid(True, linestyle="--", alpha=0.6)
plt.show()
Precision-Recall Curve (All Models)
1.0 A
—— SVM (AP = 0.50)
—— Decision Tree (AP = 0.19)
—— Logistic Regression (AP = 0.51)
—— Random Forest (AP = 0.31)
0.8 1 —-—- Baseline
0.6
0.4 4
0.2 4
0.0

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Model Comparison Summary

Accuracy

accuracy_svm = accuracy_score(y_test, svm_pred)
accuracy_log = accuracy_score(y_test, log pred)
accuracy_dt = accuracy_score(y_test, dt_selected pred)
accuracy_rf = accuracy_score(y_test, rf_selected pred)

Precision

precision_svm = precision_score(y_test, svm_pred)
precision_log = precision_score(y_test, log pred)
precision_dt = precision_score(y_test, dt_selected pred)
precision_rf = precision_score(y_test, rf_selected_pred)

Recall

recall svm = recall_score(y_test, svm_pred)

recall log = recall_score(y_test, log pred)

recall dt recall score(y_test, dt_selected pred)
recall rf = recall_score(y_test, rf_selected_pred)

F1-Score
f1l svm = f1_score(y_test, svm_pred)
f1l log = f1_score(y_test, log pred)

f1 dt = f1_score(y_test, dt_selected pred)
f1_rf = f1_score(y_test, rf_selected pred)
AUC Score

auc_svm = roc_auc_score(y_test, svm_prob)
auc_log = roc_auc_score(y_test, log prob)
auc_dt = roc_auc_score(y_test, dt_selected_prob)
auc_rf = roc_auc_score(y_test, rf_selected_prob)

comparison_df = pd.DataFrame({
'Model': ['Logistic Regression', 'SVM', 'Decision Tree', 'Random Forest'],

"Accuracy': [accuracy_log, accuracy_svm, accuracy_dt, accuracy_rf],
'"Precision': [precision_log, precision_svm, precision_dt, precision_rf],
'Recall’: [recall_log, recall svm, recall_dt, recall rf],

'F1-Score': [fl1l_log, fl1_svm, f1_dt, f1_rf],

"AUC' : [auc_log, auc_svm, auc_dt, auc_rf]

1)

print("="*80)

print("MODEL PERFORMANCE COMPARISON")
print("="*80)
print(comparison_df.to_string(index=False))
print("="%80)

Identify the best model per metric

print("\nBest Models by Metric:")

print(f"Highest Accuracy: {comparison_df.loc[comparison_df['Accuracy'].idxmax()
" ({comparison_df['Accuracy'].max():.4f})")

print(f"Highest Precision: {comparison_df.loc[comparison_df['Precision"].idxmax(
" ({comparison_df['Precision'].max():.4f})")

print(f"Highest Recall: {comparison_df.loc[comparison_df['Recall’].idxmax(),
" ({comparison_df['Recall’'].max():.4f})")

print(f"Highest F1-Score: {comparison_df.loc[comparison_df['F1-Score'].idxmax()
" ({comparison_df['F1-Score'].max():.4f})")

print(f"Highest AUC: {comparison_df.loc[comparison_df['AUC"].idxmax(), 'Mc
" ({comparison_df["AUC"].max():.4f})")

print("="%*80)

Model Accuracy Precision Recall F1-Score AUC

Logistic Regression ©.775272 ©.277541 0.779536 ©.409343 0.860398
SVM ©0.821040 ©0.322224 0.717300 ©0.444687 0.858406

Decision Tree ©0.682157 0.168217 0.553094 0.257975 0.659945
Random Forest ©0.874078 ©0.357335 0.326301 0.341114 0.768369

Best Models by Metric:
Highest Accuracy: Random Forest (0.8741)
Highest Precision: Random Forest (@.3573)

Highest Recall: Logistic Regression (0.7795)
Highest F1-Score: SVM (0.4447)
Highest AUC: Logistic Regression (0.8604)

The Logistic Regression model achieved the highest recall score (~78%), which is the
most important metric for our scenario because accurately identifying customers likely to
apply for a business credit is the primary goal. To balance capturing these customers
while avoiding unnecessary allocation of resources to those who will not apply, we will
tune the model’s probability threshold to maximize the F1-score. Using the F1-score
ensures that we account for both recall (correctly identifying potential applicants) and
precision (avoiding false positives), aligning the model's performance with the business
objectives.

The consistently low precision across all models indicates that a large proportion of

positive predictions are false positives.

Threshold Tuning for the Best Model

log prob = logreg best.predict_proba(X_ test)[:,1]

y_true = y_test # must match X_test_scaled
thresholds = []
recalls = []

precisions [1]

f1l_scores = []

for t in [i/100 for i in range(1l, 100)]: # thresholds 6.01 » 0.99
y_pred = (log_prob >= t).astype(int)

thresholds.append(t)
recalls.append(recall_score(y_true, y_pred))
precisions.append(precision_score(y_true, y_pred))
f1_scores.append(fl_score(y_true, y pred))

get best fl-score

best_threshold = thresholds[f1l_scores.index(max(f1l_scores))]
print("Best threshold for F1:", best_threshold)

Best threshold for Fl: 0.76
y_pred_test = (log_prob >= best_threshold).astype(int)

confusion matrix

final_logreg_cm = confusion_matrix(y_test, y pred_test, labels = logreg best.clz
final logreg disp = ConfusionMatrixDisplay(confusion_matrix = final_logreg cm, d

final_logreg disp.plot(values_format = None)
plt.title("Confusion Matrix - Logistic Regression")
plt.show()

prediction scores

print("\nLogistic Regression Performance:")

print('Accuracy Score: ', accuracy_score(y_test, y _pred_test))
print('Recall Score: ', recall score(y_test, y pred_test))
print('Precision Score: ', precision_score(y_test, y pred_test))
print('F1 Score: ', fl1_score(y_test, y pred_test))

Confusion Matrix - Logistic Regression

- 20000

15000

True label

10000

5000

Predicted label

Logistic Regression Performance:
Accuracy Score: 0.8966631541974007
Recall Score: ©.5168776371308017
Precision Score: ©0.4838709677419355
F1 Score: ©.499829989799388

Tuning the probability threshold to maximize the F1-score of the Logistic Regression
model will reduce the number of true positives the model is able to identify, but greatly

decrease the number of false positive predictions made.

store the final model
final_model = logreg_best
final_threshold = best_threshold

It is important to note that due to computational limitations, an undersampled version of
the training data was used to train the SVM model. The SVM may potentially perform
better if trained on the entire training data (or a balanced class data), such as the other
models, but this was not possible due to the time it would take to train the model on the

available computers.

